Protein-mediated viral latency is a novel mechanism for Merkel cell polyomavirus persistence.
نویسندگان
چکیده
Viral latency, in which a virus genome does not replicate independently of the host cell genome and produces no infectious particles, is required for long-term virus persistence. There is no known latency mechanism for chronic small DNA virus infections. Merkel cell polyomavirus (MCV) causes an aggressive skin cancer after prolonged infection and requires an active large T (LT) phosphoprotein helicase to replicate. We show that evolutionarily conserved MCV LT phosphorylation sites are constitutively recognized by cellular Fbw7, βTrCP, and Skp2 Skp-F-box-cullin (SCF) E3 ubiquitin ligases, which degrade and suppress steady-state LT protein levels. Knockdown of each of these E3 ligases enhances LT stability and promotes MCV genome replication. Mutations at two of these phosphoreceptor sites [serine (S)220 and S239] in the full viral genome increase LT levels and promote MCV virion production and transmission, which can be neutralized with anti-capsid antibody. Virus activation is not mediated by viral gene transactivation, given that these mutations do not increase late gene transcription in the absence of genome replication. Mechanistic target of rapamycin inhibition by either nutrient starvation or use of an active site inhibitor reduces Skp2 levels and stabilizes LT, leading to enhanced MCV replication and transmission. MCV can sense stresses in its intracellular environment, such as nutrient loss, through SCF E3 ligase activities, and responds by initiating active viral transmission. Protein-mediated viral latency through cellular SCF E3 ligase targeting of viral replication proteins is a unique form of latency that may promote chronic viral persistence for some small DNA and RNA viruses.
منابع مشابه
The PP4R1 sub-unit of protein phosphatase PP4 is essential for inhibition of NF-κB by merkel polyomavirus small tumour antigen
Merkel cell carcinoma (MCC) is a highly aggressive skin cancer with a high metastatic potential. The majority of MCC cases are caused by the Merkel cell polyomavirus (MCPyV), through expression of the virus-encoded tumour antigens. Whilst mechanisms attributing tumour antigen expression to transformation are being uncovered, little is known of the mechanisms by which MCPyV persists in the host....
متن کاملPhosphorylation of Large T Antigen Regulates Merkel Cell Polyomavirus Replication
Merkel Cell Polyomavirus (MCPyV) was recently discovered as a novel human polyomavirus that is associated with ~80% of Merkel Cell Carcinomas. The Large Tumor antigen (LT) is an early viral protein which has a variety of functions, including manipulation of the cell cycle and initiating viral DNA replication. Phosphorylation plays a critical regulatory role for polyomavirus LT proteins, but no ...
متن کاملMerkel Cell Polyomavirus Large T Antigen Disrupts Lysosome Clustering by Translocating Human Vam6p from the Cytoplasm to the Nucleus*
Merkel cell polyomavirus (MCV) has been recently described as the cause for most human Merkel cell carcinomas. MCV is similar to simian virus 40 (SV40) and encodes a nuclear large T (LT) oncoprotein that is usually mutated to eliminate viral replication among tumor-derived MCV. We identified the hVam6p cytoplasmic protein involved in lysosomal processing as a novel interactor with MCV LT but no...
متن کاملMerkel cell polyomavirus small T antigen controls viral replication and oncoprotein expression by targeting the cellular ubiquitin ligase SCFFbw7.
Merkel cell polyomavirus (MCV) causes an aggressive human skin cancer, Merkel cell carcinoma, through expression of small T (sT) and large T (LT) viral oncoproteins. MCV sT is also required for efficient MCV DNA replication by the multifunctional MCV LT helicase protein. We find that LT is targeted for proteasomal degradation by the cellular SCF(Fbw7) E3 ligase, which can be inhibited by sT thr...
متن کاملA Comprehensive Analysis of Replicating Merkel Cell Polyomavirus Genomes Delineates the Viral Transcription Program and Suggests a Role for mcv-miR-M1 in Episomal Persistence
Merkel cell polyomavirus (MCPyV) is considered the etiological agent of Merkel cell carcinoma and persists asymptomatically in the majority of its healthy hosts. Largely due to the lack of appropriate model systems, the mechanisms of viral replication and MCPyV persistence remain poorly understood. Using a semi-permissive replication system, we here report a comprehensive analysis of the role o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 114 20 شماره
صفحات -
تاریخ انتشار 2017